This is a simple example of Quantum Machine Learning using Python and the Qiskit library.
Quantum Machine Learning combines concepts from quantum computing and machine learning to potentially outperform classical algorithms for certain tasks. Quantum algorithms, such as Quantum Support Vector Machines (QSVM), aim to take advantage of quantum parallelism and superposition to speed up computations.
Key concepts of Quantum Machine Learning:
Python Source Code:
# Import necessary libraries
from qiskit import Aer, QuantumCircuit, transpile, assemble
from qiskit.ml.datasets import ad_hoc_data
from qiskit.aqua import QuantumInstance
from qiskit.aqua.algorithms import QSVM
from qiskit.aqua.components.multiclass_extensions import AllPairs
# Load a synthetic dataset for binary classification
feature_dim = 2
training_dataset_size = 20
testing_dataset_size = 10
random_seed = 42
sample_total, training_input, test_input, class_labels = ad_hoc_data(training_size=training_dataset_size,
test_size=testing_dataset_size,
n=feature_dim,
gap=0.3,
plot_data=False)
# Create a quantum support vector machine (QSVM) instance
backend = Aer.get_backend('statevector_simulator')
quantum_instance = QuantumInstance(backend, shots=1024, seed_simulator=random_seed, seed_transpiler=random_seed)
qsvm = QSVM(AllPairs(), training_input, test_input, None, quantum_instance)
# Train the QSVM
result = qsvm.run()
# Print the results
print(f'Testing success ratio: {result["testing_accuracy"]}')
# Get the quantum circuit underlying the QSVM
circuit = qsvm.construct_circuit(training_input)
print(circuit)
Explanation: